A numerical method for polynomial eigenvalue problems using contour integral

نویسندگان

  • Junko Asakura
  • Tetsuya Sakurai
  • Hiroto Tadano
  • Tsutomu Ikegami
  • Kinji Kimura
چکیده

We propose a numerical method using contour integral to solve polynomial eigenvalue problems (PEPs). The method finds eigenvalues contained in a certain domain which is defined by a surrounding integral path. By evaluating the contour integral numerically along the path, the method reduces the original PEP into a small generalized eigenvalue problem, which has the identical eigenvalues in the domain. Error analysis indicates that the error of the eigenvalues is not uniform: inner eigenvalues are less erroneous. Four numerical examples are presented, which confirm the theoretical predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Contour-integral Based Qz Algorithm for Generalized Eigenvalue Problems

Recently, a kind of eigensolvers based on contour integral were developed for computing the eigenvalues inside a given region in the complex plane. The CIRR method is a classic example among this kind of methods. In this paper, we propose a contour-integral based QZ method which is also devoted to computing partial spectrum of generalized eigenvalue problems. Our new method takes advantage of t...

متن کامل

An integral method for solving nonlinear eigenvalue problems

We propose a numerical method for computing all eigenvalues (and the corresponding eigenvectors) of a nonlinear holomorphic eigenvalue problem that lie within a given contour in the complex plane. The method uses complex integrals of the resolvent operator, applied to at least k column vectors, where k is the number of eigenvalues inside the contour. The theorem of Keldysh is employed to show t...

متن کامل

Chebyshev interpolation for nonlinear eigenvalue problems

This work is concerned with numerical methods for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In particular, we focus on eigenvalue problems for which the evaluation of the matrix valued function is computationally expensive. Such problems arise, e.g., from boundary integral formulations of elliptic PDE-eigenvalue problems and typically exclude the use of establis...

متن کامل

Analysis of Boundary Element Methods for Laplacian Eigenvalue Problems

The aim of the book is to provide an analysis of the boundary element method for the numerical solution of Laplacian eigenvalue problems. The representation of Laplacian eigenvalue problems in the form of boundary integral equations leads to nonlinear eigenvalue problems for related boundary integral operators. The solution of boundary element discretizations of such eigenvalue problems require...

متن کامل

Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.

The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009